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Abstract In this paper, reference variable methods are proposed for solving nonlinear
Minmax optimization problems with unconstraint or constraints for the first time, it uses ref-
erence decision vectors to improve the methods in Vincent and Goh (J Optim Theory Appl
75:501–519, 1992) such that its algorithm is convergent. In addition, a new method based on
KKT conditions of min or max constrained optimization problems is also given for solving
the constrained minmax optimization problems, it makes the constrained minmax optimiza-
tion problems a problem of solving nonlinear equations by a complementarily function. For
getting all minmax optimization solutions, the cost function f (x, y) can be constrained as
M1 < f (x, y) < M2 by using different real numbers M1 and M2. To show effectiveness
of the proposed methods, some examples are taken to compare with results in the literature,
and it is easy to find that the proposed methods can get all minmax optimization solutions
of minmax problems with constraints by using different M1 and M2, this implies that the
proposed methods has superiority over the methods in the literature (that is based on different
initial values to get other minmax optimization solutions).

Keywords Minmax optimization · Topologic construction · Convergence problem ·
Reference vectors · KKT conditions and complementarily function · Hybrid method

1 Introduction

Considering the following minmax problems with unconstraint or constraints,

min
x

max
y

f (x, y) (1)
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where f (x, y) is continuously differentiable at point (x, y), x ∈ Rs and y ∈ Rr are s and r
dimensional decision vectors, respectively.

⎧
⎨

⎩

minx maxy f (x, y)

hi (x, y) = 0
g j (x, y) ≥ 0

i = 1, 2, . . ., m1, j = 1, 2, . . ., m2 (2)

where x = (x1, x2, . . . , xn1)
T ∈ Rn1, y = (y1, y2, . . . , yn2)

T ∈ Rn2, f (x, y)

∈ R, hi (x, y) ∈ R and g j (x, y) ∈ R are continuously differentiable.
Because hi (x, y) = 0 ⇔ hi (x, y) ≥ 0,−hi (x, y) ≥ 0, problem (2) can be rewritten as

(
minx maxy f (x, y)

g j (x, y) ≥ 0
j = 1, 2, . . . , m (3)

In this paper, we consider minmax optimization solutions of problems (1) and (3), which are
defined by the following definitions,

Definition 1 If there exist δ and a point (x∗, y∗) such that f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗)
holds for all points (x, y) satisfying ||x − x∗|| ≤ δ, ||y − y∗|| ≤ δ, then point (x∗, y∗) is a
local optimization solution of problem (1).

Definition 2 If there exist δ and a point (x∗, y∗) such that f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗)
holds for all points (x, y) satisfying ||x − x∗|| ≤ δ, ||y − y∗|| ≤ δ in set S = {|g j (x, y) ≥
0, j = 1, . . . , m}, then point (x∗, y∗) is a local optimization solution of problem (3).

The minmax optimization problem with constraints or unconstraint has yet not been sat-
isfactorily solved in the literature. The first issue is whether the optimization solution of
Eq. 1 exists, particularly for problem (3). Many promising results for minmax optimization
problems with unconstraint were reported [1–7], which are difficult for calculation, such as
methods based on topological theory in Refs. [2,6]; But for minmax optimization problems
with constraints, reports about this issue are few if any. The second issue is how to obtain
minmax optimization solutions of problem (1) or (3), there exist several different methods
for solving problem (1) or (3), for example, when the cost function f (x, y) is discontinu-
ous for arbitrary y, a variety of regularization approaches has been used to obtain smooth
approximations to problem (1), but sometimes the smooth approximating problems become
significantly ill-conditioned, to this end, feedback precision-adjustment rule is given in Ref.
[8–12]; when the cost function f (x, y) is continuously differentiable for x and y, there exists
some methods such as T.L.Vincent’s method [13] to solve problem (1), though T.L.Vincent’s
method given the convergence condition on minmax optimization solutions of problem (1)
or problem (3) with bounds on x and y, for some examples, such as Example 3 in Ref.
[13], this condition is not satisfied, in other words, it is impossible that minmax optimization
solutions of the kind of problems are got by this method, the reason of generating this case
is that the topologic construction of this method is not convergent near its minmax optimi-
zation solutions. To overcome this, this paper gives new methods to improve its topologic
construction, which adds reference variables into T.L.Vincent’s method in order to ensure
that its topologic construction is convergent near its minmax optimization solutions. In addi-
tion, in order to solve problem (3) with general constraints, a new method based on solving
nonlinear equations is also given in this paper, which applies a nonlinear complementarily
function [14] to necessary conditions of problem (3) like KKT conditions and gets nonlinear
equations, thus the minimax optimization problems with constraints becomes a problem of
solving nonlinear equations by current methods [15], such as inexact Newton method and so
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on, its key technique is Newton iteration method, usual Newton iteration method is locally
convergent, if homotopy method or Trust region method is added into this method, then a
hybrid method with global convergence is got. Because the topologic construction of every
method is different from each other, it leads to that their convergence trajectories are dif-
ferent from each other, thus considering convergence speed and global convergence of each
method, hybrid methods of current methods are proposed. Because sometimes there exist
many minmax optimization solutions in problem (3), for getting all solutions, in this paper,
the cost function f (x, y) is constrained as M1 < f (x, y) < M2 where M1 and M2 are real
numbers, thus all minmax optimization solutions of problem (3) can be got by using different
M1 and M2.

Based on the above, aim of this paper is to get both new convergence algorithms based
on reference variables for solving problem (1) or problem (3) with bounded constraints on
variables x, y and a new method based on solving nonlinear equations for solving problem
(3). At the same time, to show efficiency of the proposed method, six examples are used to
compare with results in the literature, as a result, we find out that (1) the proposed method
is convergent near its minmax optimization solution for Examples 1 and 2, but T.L.Vin-
cent’s method is not convergent; (2) the proposed method is also convergent near its minmax
optimization solution for Examples 3 and 4 as with T.L.Vincent’s method; (3) all minmax
optimization solutions of problem (3) are got by the proposed method for Examples 5 and
6, but this is difficult to be get by methods in the literature, this indicates that the proposed
method is very useful.

2 New algorithms for solving minmax optimization problems with unconstraint
or bounded constraints on variables

In this section, first of all, we introduce trajectory-following methods given in Ref. [13] since
it is very robust for solving minmax optimization problems with unconstraint or bounded
constraints on variables, but for some examples, such as Example 3 in Ref. [13] or problem
(3), this is difficult to be get by methods in the literature, to this end, based on trajectory-fol-
lowing method, we give new methods with reference decision vectors for solving minmax
optimization problems with unconstraint or bounded constraints on variables.

T.L.Vincent’s method for solving problem (1) with unconstraint can be written as

�x = −η
∂ f (x, y)

∂x
, �y = η

∂ f (x, y)

∂y
(4)

where η is a small positive number.
T.L.Vincent’s method for solving minx maxy f (x, y) with constraints � = {(x, y)|x L ≤

x ≤ x H , yL ≤ y ≤ y H } is given by

�x =

⎧
⎪⎨

⎪⎩

0 if x = x L ,
∂ f (x,y)

∂x ≤ 0
0 if x = x H ,

∂ f (x,y)
∂x ≥ 0

−η
∂ f (x,y)

∂x otherwise

�y =

⎧
⎪⎨

⎪⎩

0 if y = yL ,
∂ f (x,y)

∂y ≤ 0

0 if y = y H ,
∂ f (x,y)

∂y ≥ 0

−η
∂ f (x,y)

∂y otherwise

(5)

where η is a small positive number.
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To ensure convergence of Eqs. 4 and 5, T.L.Vincent’s method gives the following sufficient
condition.

The sufficient condition of minmax optimization solution: For a given continuously differ-
entiable function f (x, y), trajectories of Eqs. 4 or 5 converge to the equilibrium point (x∗, y∗)
from any initial point (x, y) ∈ � if −(x−x∗)T (∂ f (x, y)/∂x)+(y−y∗)T (∂ f (x, y)/∂y) < 0
holds, where point (x∗, y∗) is a minmax optimization solution of f (x, y).

Because point (x∗, y∗) satisfying the above sufficient condition is unknown, it is difficult
to ensure that trajectories of Eqs. 4 or 5 converge to minmax optimization solution (x∗, y∗)
when initial values of variables x and y are far from point (x∗, y∗). In fact, for some examples,
the trajectories of Eqs. 4 or 5 are also not convergent near its minmax optimization solution
even if η is very small, such as example f (x, y) = xy in Ref. [13]. From the following theo-
rem 1, it is easy to see that the reason of generating this case is that the topologic construction
of Eqs. 4 or 5 is not convergent near its minmax optimization solution for some examples.

Theorem 1 For a given continuously differentiable function f (x, y), assuming that point
(x∗, y∗) is a minmax optimization solution of f (x, y), if |Z | < 1 for all solutions Z of
|A − Z I | = 0 near point (x∗, y∗), then trajectories of Eq. 4 are convergent; if |Z | > 1
for all solutions Z of |A − Z I | = 0 near point (x∗, y∗), then trajectories of Eq. 4 are not
convergent; (for proof, see Appendix), where η is a small positive number (see Eq. 4) and

A =
⎡

⎣
I − η

∂2 f (x∗,y∗)
∂2x

η
∂2 f (x∗,y∗)

∂xy

η
∂ f (x∗,y∗)

∂xy −I − η
∂2 f (x∗,y∗)

∂2 y

⎤

⎦ .

Now we apply Theorem 1 to example f (x, y) = (x2 − 1)(y2 − 1). By Definition 1,
points (1, 1), (1,−1), (−1, 1) and (−1,−1) are minmax optimization solutions of f (x, y),

near any minmax optimization solution, such as point (1, 1), we have A =
[

1 4η

4η −1

]

. From

|A − Z I | = 0, it is easy to see that |Z | > 1 for arbitrary positive number η, in other words,
the topologic construction of Eq. 4 near point (1, 1) is not convergent. This implies that it is
difficult that minmax optimization solution (1, 1) is got by using Eq. 4 even if initial values
are set to number close to point (1, 1), similar to Eq. 4, there exists also this case for Eq. 5.
To overcome this case, we propose two methods for changing the topologic construction of
Eqs. 4 or 5: simplest method is to add moment items into Eqs. 4 or 5, the other method is to
add reference variables to Eqs. 4 or 5.

2.1 Adding moment item methods for solving minmax optimization problems
with unconstraint or bounded constraints on variables

To improve the topologic construction of Eq. 4, an adding moment item method is given by

�x = −η1
∂ f (x, y)

∂x
+ η2(x(k − 1) − x(k − 2)),

�y = η1
∂ f (x, y)

∂y
− η2(y(k − 1) − y(k − 2)) (6)

where η1 and η2 are small positive numbers.
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T improve the topologic construction of Eq. 5, another adding moment item method is
given by

�x =

⎧
⎪⎨

⎪⎩

0 if x = x L ,
∂ f (x,y)

∂x ≤ 0
0 if x = x H ,

∂ f (x,y)
∂x ≥ 0

−η1
∂ f (x,y)

∂x + η2(x(k − 1) − x(k − 2)) otherwise

�y =

⎧
⎪⎨

⎪⎩

0 if y = yL ,
∂ f (x,y)

∂y ≤ 0

0 if y = y H ,
∂ f (x,y)

∂y ≥ 0

−η1
∂ f (x,y)

∂y + η2(y(k − 1) − y(k − 2)) otherwise

(7)

where η1 and η2 are small positive numbers.
Because x L ≤ x ≤ x H , yL ≤ y ≤ y H , there exist vectors U = {u1, . . . , un1} and

V = {V1, . . . , Vn2} such that xi = x L
i + 2 ∗ (x H

i − x L
i )/(1 + e−ui ) and yi = yL

i + 2 ∗ (y H
i −

yL
i )/(1 + e−vi ), substituting these into Eq. 7 yields

�U = −η1
∂ f (U, V )

∂U
+ η2(U (k − 1) − U (k − 2)),

�V = −η1
∂ f (U, V )

∂V
+ η2(V (k − 1) − V (k − 2))

To ensure that the moment items improve the topologic construction of Eqs. 4 and 5, the
following Theorem 2 is given.

Theorem 2 For a given continuously differentiable function f (x, y), assuming that point
(x∗, y∗) is a minmax optimization solution of f (x, y), if |Z | < 1 for all solutions Z of
|A(Z)| = 0 near point (x∗, y∗), then Eq. 6 is convergent; if |Z | > 1 for all solutions Z
of |A(Z)| = 0 near point (x∗, y∗), then Eq. 6 is not convergent; (for proof, see Appendix),
where

A =
[−Z2 I + (1 + η2 − a)Z + η2 I bZ

bZ −Z2 I + (1 + η2 − c)Z + η2 I

]

,

a = η1
∂2 f (x∗, y∗)

∂2x
, b = η1

∂2 f (x∗, y∗)
∂xy

and c = η1
∂2 f (x∗, y∗)

∂2 y
,

and η1 and η2 are small positive numbers.

Now we apply this theorem to example f (x, y) = (x2 − 1)(y2 − 1), near any
minmax optimization solution, such as point (1, 1), we have

A =
[−Z2 + (1 + η2)Z + η2 4Zη1

4Zη1 −Z2 + (1 + η2)Z + η2

]

. In theory, it follows that |Z | < 1

for selecting η1 and η2 (see Appendix), in other words, Eq. 6 with momentum items is con-
vergent by selecting η1 and η2, though this implies that momentum items can change the
topologic construction of Eq. 4, it is difficult to select η1, η2 such that |Z| < 1. To overcome
this case, we propose a new method based on reference decision vectors for improving the
topologic construction of Eqs. 4 and 5, which is easy to select learning rates η1, η2, η3 such
that |Z| < 1.
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2.2 Reference variable methods of solving min–max optimization problems
with unconstraint or bounded constraints on vectors x and y

To improve the topologic construction of Eq. 4, a reference variable method is given by

x(k) = x(k − 1) − η1
∂ f (x, y)

∂x
− η2(x(k) − xr (k − 1))

y(k) = y(k − 1) + η1
∂ f (x, y)

∂y
− η2(y(k − 1) − yr (k − 1))

xr (k) = xr (k − 1) + η3(x(k − 1) − xr (k − 1))

yr (k) = yr (k − 1) + η3(y(k − 1) − yr (k − 1)) (8)

where initial values of reference vectors xr , yr are different from that of vectors x, y, η1, η2

and η3 are small positive numbers.
T improve the topologic construction of Eq. 5, another reference variable method is given

by

�x =

⎧
⎪⎨

⎪⎩

0 if x = x L ,
∂ f (x,y)

∂x ≥ 0
0 if x = x H ,

∂ f (x,y)
∂x ≤ 0

−η
∂ f (x,y)

∂x − η2(x − xr ) otherwise

�y =

⎧
⎪⎨

⎪⎩

0 if y = yL ,
∂ f (x,y)

∂y ≤ 0

0 if y = y H ,
∂ f (x,y)

∂y ≥ 0

η1
∂ f (x,y)

∂y − η2(y − yr ) otherwise

�xr (k) = η3(x(k − 1) − xr (k − 1)), �yr (k) = η3(y(k − 1) − yr (k − 1)) (9)

where initial values of reference vectors xr , yr are different from that of vectors x, y, with
x L ≤ x ≤ x H, x L ≤ xr ≤ x H, yL ≤ y ≤ y H, yL ≤ yr ≤ y H, η1, η2 and η3 are small
positive numbers.

To ensure that the moment items improve the topologic construction of Eqs. 4 and 5, the
following Theorems 3 and 4 are given.

Theorem 3 Considering minx maxy f (x, y) with unconstraint, for Eq. 8, if
∥
∥
∥

∂2 f (x,y)

∂2x

∥
∥
∥ and

∥
∥
∥

∂2 f (x,y)

∂2 y

∥
∥
∥ are bounded, then vectors x and y are convergent by selecting η1, η2 and η3 near

any minmax optimization solution of minx maxy f (x, y) (for proof see Appendix)
From this theorem, it is easy to see that reference variables can change the topologic

construction of Eq. 4 and make Eq. 8 converge by suitable choice of η1, η2 and η3. Though
this theorem is a sufficient condition, from the proof of this theorem, we see that if only η2

and η3 are chosen as numbers close to 1 and η1 is very small positive number (which is easy
to carry out), then there always exists an equilibrium point (that may be unknown point) such
that Eq. 8 converge to it even if initial values of variables x and y are far from this point, this
indicates that the proposed method is feasible and useful. Similar to Theorem 3, for minmax
optimization problems with bounded constraints on vectors x and y, we have the following
Theorem 4.

Theorem 4 Considering minx maxy f (x, y) with bounded constraints on vectors x and y,

for Eq. 9, if
∥
∥
∥

∂2 f (x,y)

∂2x

∥
∥
∥ and

∥
∥
∥

∂2 f (x,y)

∂2 y

∥
∥
∥ are bounded, then vectors x and y are convergent

by selecting η1, η2 and η3 near any minmax optimization solution of minx maxy f (x, y)
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with bounded constraints on vectors x and y (the proof of this theorem is somewhat simi-
lar to Theorem 3, omit here). Because x L ≤ x ≤ x H , yL ≤ y ≤ y H , there exist vectors
U = {u1, . . . , un1} and V = {V1, . . . , Vn2} such that xi = x L

i + 2 ∗ (x H
i − x L

i )/(1 + e−ui )

and yi = yL
i + 2 ∗ (y H

i − yL
i )/(1 + e−vi ), substituting these into Eq. 9 yields

�U = −η
∂ f (U, V )

∂U
− η2(U (k − 1) − Ur (k − 1)), �V = −η

∂ f (U, V )

∂V
+ η2(V (k − 1) − Vr (k − 1))

and �Ur (k) = η3(U (k − 1) − Ur (k − 1)), �Vr (k) = η3(V (k − 1) − Vr (k − 1)).

From this theorem, we see that reference variables can change the topologic construction
of Eq. 5, and make Eq. 9 converge, in other words, reference variable method can solve
minmax optimization problems with bounds on vectors x and y or unconstrained minmax
optimization problems, but it is difficult to be applied to problem (3). To this end, we try to
find a new method to solve all solutions of problem (3) in the next section, which makes the
constrained minmax optimization problems a problem of solving nonlinear equations by a
complementarily function, for getting all minmax optimization solutions, the cost function
f (x, y) is constrained as M1 < f (x, y) < M2 where M1 and M2 are real numbers.

3 New methods for solving minmax optimization problems with constraints

It is well known that KKT conditions are necessary condition of min or max optimization
problems with constraints, though the KKT conditions are only necessary condition, it given
a method for solving min or max optimization problems with constraints using nonlinear
equations. Applying this idea to problem (3), that how to use this necessary condition of
problem (3) to get its all solutions will be discussed in this section.

3.1 The necessary condition of Minmax optimization problems with constraints

By reference to methods of getting KKT conditions of min or max optimization problems
with constraints, KKT necessary condition of Eq. 2 is given by the following Theorems 5
and 6.

Theorem 5 Assume that point (x∗, y∗) is a minmax optimization solution of problem (2),
f (x, y) and g j are continuously differentiable at point (x∗, y∗) as j ∈ J where J =
{ j |g j (x, y) = 0, j = 1, . . . , m}, then there exists no vectors P1 and P2 such that
{∇x f (x∗, y∗)P1 < 0

∇x g j (x∗, y∗)P1 > 0
and

{∇y f (x∗, y∗)P2 > 0
∇y g j (x∗, y∗)P2 > 0

hold (for the proof, see appendix).

Theorem 6 Assume that point (x∗, y∗) is a minmax optimization solution of problem (2),
and the set {∇gi |i ∈ I } with (I = {i |gi = 0}) are linearly independent at point (x∗, y∗),
then there exists point (x∗, y∗) such that

(1) γi gi (x∗, y∗) = 0, λi gi (x∗, y∗) = 0, λi , γi ≥ 0, gi (x∗, y∗) ≥ 0, i = 1, 2, . . ., m,

(2) ∇x f (x∗, y∗) −
m∑

i

λi∇x gi (x∗, y∗) = 0, (10)

(3) ∇y f (x∗, y∗) +
n∑

i

γi∇y gi (x∗, y∗) = 0, j = 1, 2, . . ., m. (The proof, see appendix)
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It should be noted that there exists the case of λi = 0, gi (x∗, y∗) < 0 for λi gi (X x∗, y∗) = 0,
which is not solution of Eq. 10, To make λi gi (X̄) = 0, λi ≥ 0, gi (X̄) ≥ 0 hold, a nonlinear
complementarily function [14] NCF � : R2 → R can be used to limit feasible region of
solutions of Eq. 10 where �(U, V ) = 0 ⇔ U ≥ 0, V ≥ 0, U V = 0, generally �(U, V )

is selected as
√

U 2 + V 2 − U − V . Because �(U, V ) is not differentiable at U = V =
0,�2(U, V ) can be used to limit feasible region of Eq. 10 since �2(U, V ) is differentiable
at U = V = 0. Thus, Eq. 10 can be written as

(1) �(λi , gi ) = 0, i = 1, 2, . . ., m,

(2) ∇x f (x∗, y∗) −
n∑

i

λi∇x gi (x∗, y∗) = 0, (11)

(3) ∇y f (x∗, y∗) +
n∑

i

γi∇y gi (x∗, y∗) = 0, j = 1, 2, . . ., m

where �(u, v) = √
u2 + v2 − u − v.

Because Theorem 6 is a necessary condition of problem 2, it is possible that there exist
many solutions in Eq. 11. In order to get all feasible solutions, in this paper, as new constraint,
inequality M1 + ε ≤ f (x, y) ≤ M2 − ε is used to limit feasible region of solutions in Eq. 11
such that all feasible solutions of Eq. 11 are solved continuously by using different M1 and
M2, where M1 and M2 are real numbers, ε is a given small positive number such as 0.1.

Though if there exists a solution in Eq. 11, then we always can find a method of solving
nonlinear equations to get this solution, it should be noted that some methods of solving non-
linear equations are locally convergent, if initial values are far from the solutions of Eq. 11,
then their trajectories are not convergent, this does not imply that there exist no solution in
this equations. For this, global convergence methods are used to solve Eq. 11 as much as
possible, such as Continuation method.

3.2 Hybrid methods for solving nonlinear equations

To solve Eq. 11, there are many methods, the key technique of which is Newton iteration
method, usual Newton iteration method is locally convergent, if homotopy method or Trust
region method is added into this method, then a hybrid method with global convergence
is got. Because the topologic construction of every method is different from each other, it
leads to that their convergence trajectories are different from each other, thus considering
convergence speed and global convergence of each method, hybrid methods of the following
various methods are necessary.

(1) Methods from optimization toolbox of MATLAB, for example, Hessian method, Jaco-
bean method, Large-Scale method, LevenbergMarquardt method, LineSearchType
method and so on, whose Maximum iteration number and terminate tolerance on the
function value can be set. If terminate tolerance on the function value is satisfied, a
solution of nonlinear equations is got; If the maximum iteration number is reached, this
requires changing initial values or using other methods to solve it again.

(2) Continuation method [16] with convergence in large region (that is got by homotopy
method and Newton iteration).
For a given equations F(X) = 0, if X0 is initial value, the iteration formula is given by
d X (t)

dt = [
F ′(X) + α(1 − t3)I

]−1
(3αt2(X − X0) − F(X0)), t ∈ [0, 1] where α is an

large number enough so that the inverse of the above matrix exists. This equation can be
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written by using integration method with mean point as

X1 = X0 − (1/N )[J (X0) + α1 I ]−1 F(X0), Xk+1/2 = Xk + (Xk − Xk−1)/2,

tk+1/2 = (k + 1/2)/N

Xk+1 = Xk − (1/N )[J (Xk+1/2) + α2(1 − t3
k+1/2)I ]−1[F(X0)

−3α2t2
k+1/2(Xk+1/2 − X0)]

where J is the Jacobian matrix of F(X), 1/N is integration steplength.
Because this algorithm is convergent in large region, it can be used to give initial values
to a local convergence algorithm, such as LargeScale method from MATLAB optimi-
zation toolbox. If only N is an large number enough so that its trajectory finally enters
into convergence region of the local convergence algorithm that can be a method from
MATLAB optimization toolbox or a hybrid algorithm (that is composed of some meth-
ods from MATLAB optimization toolbox, their sequence is generated by a rule, and
iteration results of former method are used as initial value of the next method), then its
trajectory gradually approaches to a solution of F(X) = 0 via each iteration. In addition,
because computing time of solving higher-dimensional cost function problem is longer
than that of solving low- dimensional cost function, iteration number N is selected as
smaller number as possible for higher-dimensional cost function problem.

(3) Reference variable method with convergence in large region (Lu, Submitted)

Xk = Xk−1 + K1 f (Xk) − K2(Xk−1 − Yk−1)

Yk = Yk−1 + K3(Xk−1 − Yk−1), f (X) = [ f1, f2, · · · , fn]
K1 = diag

(

−K sign

(
∂ f1

∂x1

)

,−K sign

(
∂ f2

∂x2

)

, . . . ,−K sign

(
∂ fn

∂xn

))

Xk = [x1, x2, . . . , xn]
where Xk and Yk are solution vector of equations f (X) = 0 and corresponding reference
vector, respectively, 0 < K < 1 and 0 < K2, K3 < 2. This algorithm can be used to set
an initial value for some local convergence algorithms.

(4) Other methods such as inexact Newton method for solving equations F(X) = 0 in Ref.
[17–21].
Assume that the steplength is 1, for a given X0, starting from iteration number K = 0,
the following is executed until the iteration is convergent.
Choose ηk ∈ [0, 1) and Sk properly such that

∥
∥F ′(Xk)Sk + F(Xk)

∥
∥ ≤ ηk ‖F(Xk)‖ ,

Xk+1 = Xk + Sk hold, where ηk often depend on Sk .
This algorithm has been proved to be local convergence. If combining inexact New-
ton method with inexact linear search method or Trust region algorithm, it is globally
convergent.

Considering Eq. 11 and hybrid method of the above methods, a new algorithm is got for
solving minmax optimization problem with constraints.

3.3 A new algorithm for solving minmax optimization problems with constraints

In Subsect. 3.1, minmax optimization problems are changed to a problem of solving non-
linear Eq. 11 continuously, while in Subsect. 3.2, methods for solving nonlinear Eq. 11 has
been discussed, combining Subsect. 3.1 with Subsect. 3.2, the following new algorithm is
got for solving minimax optimization problems with constraints.
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Algorithm A
Step 1: For given two numbers M0 and M1(M0 < M1) such that f (X0) = M0 and f (X1) =
M1, where X0 and X1 are not minimax optimization solutions of problem 2, then construct
the set of constraints S = { f (x) ≤ f (X0) − ε or f (X0) + ε ≤ f (x) ≤ f (X1) − ε or
f (X1) + ε ≤ f (x)}, where ε is a given small positive number such as 0.1.
Step 2: For ith constraint f (Xi ) < f (x) < f (Xi+1) in set S, first, add it to Eq. 11 by using
nonlinear complementarily function, then solve this equations by using a hybrid method
given in Subsect. 3.2, if the solution exists (that means error of each equation is smaller than
10−14), then the solution Xnew

i is got for i th constraint in set S, otherwise in order to test and
verify whether the equations have other solutions, several different initial values are chosen
to solve Eq. 11 again, if its solution still dose not exist, then ε = ε/10, solve the equations
again until the resulting Eq. 11 for i th constraint is not solvable any more, this implies that
there exists no solution for problem 2 as f (Xi ) < f (x) < f (Xi+1), thus this constraint
f (Xi ) < f (x) < f (Xi+1) will be removed from set S, when all constraints are removed,
the algorithm is over, otherwise go to step 3.
Step 3: Adding constraints f (Xi ) < f (x) < f (Xnew

i ) and f (Xnew
i ) < f (x) < f (Xi+1) for

all i (i = 1, 2, . . . ,) into constraint set S, rearrange order of X according to value of f (X),
then go to Step 2.

Because it is difficult to determine whether a nonlinear equations has solution by current
methods, it is necessary that several different initial values are chosen to test and verify
whether the equations has other solution.

The algorithm is not only suitable to solve minmax optimization problems with separated
minmax optimization solutions whose number is finite, but is also suitable to solve minmax
optimization problems with continuous optimization solutions since it can get the distribution
of the optimization solutions for this problems.

As stated above, the proposed method makes the constraint minmax optimization problem
a problem of solving nonlinear equations, and can get all minmax optimization solutions, this
is very important to practical problems. From this, we can claim that the proposed method
is superior to existing methods for solving nonlinear minmax optimization problems in the
literature.

4 Examples

In this section, some simulations are carried out in order to verify the above ideas in three
respects: The first is that for Examples 1 and 2, their minmax optimization solutions are got
by the proposed reference variable method, but it can’t be got by T.L.Vincent’s methods.
The second is that for Examples 3 and 4, their minmax optimization solutions are got by the
proposed reference variable method as with T.L.Vincent’s methods. The third is to verify the
proposed algorithm may find all minmax optimization solutions of problem (2) with con-
straints, such as Examples 5 and 6, which can’t be solved by T.L.Vincent’s methods. A set
of Matlab programs is written on 1.5G PC Windows XP platform to implement the tests. For
Examples 5 and 6, eight different initial values are chosen to test and verify whether Eq. 11
have solution that makes the absolute value of the error of each equation smaller than 10−14.

Example 1 min
x

max
y

f (x, y) = (x2 − 1)(y2 − 1) (Ref. [13]),

From (∂ f (x, y)/∂y) = 0, (∂ f (x, y)/∂x) = 0, we get solutions (0, 0), (−1,−1), (1, 1),

(−1, 1) and (1,−1). By Definition 1, we see that Minmax optimization solutions of f (x, y)
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Fig. 1 Trajectories starting from initial value [(−2.1,−3.1),(−2.1,−1.1)] for variables x , y and reference
variables xr , yr for Example 1 (Solid line and dot line means trajectory of variables x , y and trajectory of
reference variables xr , yr , respectively)

Fig. 2 Trajectories starting from initial value [(2.1, −3.1),(2.1, −1.1)] for variables x, y and reference vari-
ables xr , yr for Example 1 (Solid line and dot line means trajectory of variables x , y and trajectory of reference
variables xr , yr , respectively)

Fig. 3 Trajectories starting from initial value [(−2.1, 3.1),(−2.1, 1.1)] for variables x , y and reference vari-
ables xr , yr for Example 1 (solid line and dot line means trajectory of variables x , y and trajectory of reference
variables xr , yr , respectively)

are points (−1,−1), (1, 1), (−1, 1) and (1,−1). In the simulations, near each minmax opti-
mization solution, the initial values of variables x, y and reference variables xr , yr are taken
as [(−2.1,−3.1),(−2.0,−1.1)], [(2.1,−3.1),(2.0,−1.1)], [(−2.1, 3.1),(−2.0, 1.1)], [(2.1,
3.1), (2.0, 1.1)], respectively, η1, η2 and η3 are 0.001, 0.002, 0.001, respectively, trajectories
starting from different initial values converge to points (−1,−1), (1,−1), (−1, 1) and (1, 1),
respectively as shown in Figs. 1–4. As a result, the proposed reference variable method is
convergent near minmax optimization solutions for this example, but T.L.Vincent’s method
is not convergent even if initial values of variables x and y are numbers close to Minmax
optimization solutions, this indicates that the proposed method is very useful.
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Fig. 4 Trajectories starting from initial value [(2.1, 3.1),(2.1, 1.1)] for variables x, y and reference variables
xr , yr for Example 1 (Solid line and dot line means trajectory of variables x , y and trajectory of reference
variables xr , yr , respectively)

Fig. 5 Trajectories starting from initial value [(2.1, 3.1),(2.1, 1.1)] for variables x , y and reference variables
xr , yr for Example 2 (Solid line and dot line means trajectory of variables x , y and trajectory of reference
variables xr , yr , respectively)

Example 2 min
x

max
y

f (x, y) = xy (Ref. [13]),

From (∂ f (x, y)/∂y) = 0, (∂ f (x, y)/∂x) = 0 and definition 1, we see that point (0, 0) is
the minmax optimization solution of f (x, y). In the simulations, near minmax optimization
solution, the initial values of variables x, y and reference variables xr , yr are taken as [(2.1,
3.1), (2.0, 1.1)], η1, η2 and η3 are 0.01, 0.001, 0.0001, respectively, trajectories converge
to point (0, 0) as shown in Fig. 5. As a result, the proposed reference variable method is
convergent near minmax optimization solutions for this example, but T.L.Vincent’s method
is not convergent even if initial values of variables x and y are numbers close to Minmax
optimization solutions, this indicates that the proposed method is very useful again.

Example 3 min
x

max
y

f (x, y) = x2 − 8xy + 3x − 9y2 + 7y − 1 (Ref. [13]),

From (∂ f (x∗, y)/∂y) = 0, (∂ f (x, y∗)/∂x) = 0 and definition 1, we see that point (1/50,
19/50) is the minmax optimization solution of f (x, y). In the simulations, initial values of
variables x , y and reference variables xr , yr are generated from uniform distributions [−2, 2],
η1, η2 and η3 are 0.02, 0.02, 0.1, respectively, trajectories converge to point (1/50, 19/50) as
shown in Fig. 6. As a result, the proposed reference variable method is also convergent as
with T.L.Vincent’s method for this example.
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Fig. 6 Trajectories converge to point (1/50, 19/50) for Example 3 (solid line, dot line and dash-dot line mean
trajectory got by T.L.Vincent’s method, trajectory of variables x , y, trajectory of reference variables xr ,yr ,
respectively)

Fig. 7 Trajectories converge to point (0.1, 1) for g1 of Example 4 (solid line, dot line and dash-dot line mean
trajectory got by T.L.Vincent’s method, trajectory of variables x , y, trajectory of reference variables xr , yr ,
respectively)

Example 4 That two firms sell substitutable products and seek to maximize their profits
through advertising is given by (Ref. [13]),

g1(x, y) = x + 5(x2 − x)/(3 + y), g2(x, y)

= x + 3(x2 − x)/(2 + 2y) where 0 ≤ x, y ≤ 1.

Applying the above methods to g1 with x as the minimizer and y as the maximizer subject
to the above inequalities, we see that point (0.1, 1) is the minmax optimization solution of
g1, initial values of variables x, y and reference variables xr , yr are generated from uniform
distributions [−1, 1], η1, η2 and η3 are 0.04, trajectories converge to point (0.1, 1) as shown
in Fig. 7 for min–max of g1. Similarly, the trajectories starting from three different initial
values are shown in Figs. 8–10 for min–max of g2 with x as the minimizer and y as the
maximizer subject to the above inequalities, η1, η2 and η3 are 0.01. In the cases, we see that
the trajectories converge to y ∈ [0.5, 1] and x = 0 as with the results in Ref. [13].

Example 5 minx maxy = sin2 x − x cos y + 2 sin x − cos2 y + y − 1
Subject to x2 + y2 ≥ 25; x, y ∈ [−5, 5],

In order to obtain all feasible solutions of Example 5, simulations with two cases: (1) Large-
scale method. (2) A hybrid method of Largescale method and Hessian method (Hessian
method uses results of Largescale method as initial values to run), are carried out starting at
M1 < f (x, y) < M2 where M1 = −1,000,000 and M2 = 30. In Eq. 11, the initial values of
variables are generated from uniform distributions [0, 4] for the two cases. Simulation results
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Fig. 8 Trajectories starting from initial values with uniform distributions [−2, 2], converge to point (0, 0.5)
for g2 of Example 4 (solid line, dot line and dash-dot line mean trajectory got by T.L.Vincent’s method,
trajectory of variables x , y, trajectory of reference variables xr , yr , respectively)

Fig. 9 Trajectories starting from initial values with uniform distributions [−0.4, 1.6] for g2 of Example 4,
converge to point (0, 0.5803) and point (0, 0.7013), respectively by our method and T.L.Vincent’s method
(solid line, dot line and dash-dot line mean trajectory got by T.L.Vincent’s method, trajectory of variables x ,
y, trajectory of reference variables xr , yr , respectively)

of the two cases are shown in Table 1, where constraints x, y ∈ [−5, 5] are equivalent to
x2 ≤ 25 and y2 ≤ 25.

In Table 1, symbol “–” means that no minmax optimization solution is found even if
different initial values are used. Largescale 20 + Hessian 70 means Hessian method runs 70
times after Largescale method runs 20 times. From this table, we see that computing time
taken by using hybrid methods is shorter than that using single method, where hybrid method
is only used for the cases in which those computing time taken by using Largescale method
is longer. In addition, points (−0.88734, 5) and (3.6689, 3.6796) are minmax optimization
solutions of Example 5 that are got by using different M1 and M2.

Example 6 maxX minY f (x, y) = x2
1 +x2

2 +x1x2−14x1−16x2+(y6 − 10)2+4 (y7 − 5)2+
(y8 − 3)2 + 2 (y1 − 1)2 + 5y2

2 + 6.5 (y3 − 11)2 + 2 (y4 − 10)2 + (y5 − 7)2 + 45

s.t g1 = 800 − 4x1 − 5x2 + 3y2 − 9y3 ≥ 0,

g2 = 800 − x2
1 − 2 (x2 − 2)2 + 2x1x2 − 14y8 + 6y1 ≥ 0,

g3 = 800 − 3 (x1 − 2)2 − 4 (x2 − 3)2 − 2y2
6 + 7y7 ≥ 0,

g4 = 800 − 10x1 + 8x2 + 17y2 − 2y3 ≥ 0,

g5 = 1000 + 8x1 − 2x2 − 5y4 + 2y5 ≥ 0,
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Fig. 10 Trajectories starting from initial values with uniform distributions [−0.4, 1.6] for g2 of Example 4,
converge to point (0, 0.8874) and point (0, 0.5), respectively by our method and T.L.Vincent’s method (solid
line, dot line and dash-dot line mean trajectory got by T.L.Vincent’s method, trajectory of variables x , y,
trajectory of reference variables xr , yr , respectively)

Table 1 The simulation results of Example 5

Iteration method Constraints of f (x) Minmax feasible (λ1, λ2, . . . , λ5) f (X) ε CPU time (s)

solutions (x1, x2)

Largescale [−1,000,000, 30] (−0.88734, 5) (0, 0, 0, 0, 0.13069) 3.2217 0.1 2.3930

[3.2217, 30] (3.6689, 3.6796) (0., 0,…,0) 4.3396 3.1150

[−1,000,000, 3.2217] – – – –

[3.2217, 30]

[30, 1,000,000]

Largescale 30 +
Hessian 70 [−1,000,000, 30] (−0.88734, 5) (0, 0, 0, 0, 0.13069) 3.2217 0.1 0.4920

Largescale 20 +
Hessian 70 [3.2217, 30] (3.6689 3.6796) (0., 0,…,0) 4.3396 0.19

Largescale 20 +
Hessian 70 [−1,000,000, 3.2217] – – – –

[3.2217, 30]

[30, 1,000,000]

g6 = 800 − 5x2
1 − 8x2 − (y6 − 6)2 + 2y7 ≥ 0,

g7 = 800 + 3x1 − 6x2 − 12 (y4 − 8)2 + 7y5 ≥ 0,

g8 = 800 − 0.5 (x1 − 8)2 − 2 (x2 − 4)2 − 3y2
8 + y1 ≥ 0,

−√
1,000 ≤ xi ≤ √

1,000, −√
1,000 ≤ y j ≤ √

1,000, i = 1, 2, j = 1, . . . , 8.

To solve Eq. 11, fsolve from the Matlab Optimization toolbox with the Largescale option
is used. Simulations are carried out starting at f (x, y) < M2 where M1 = 2,000. In the
simulations, the initial values of variables are generated from uniform distributions [0, 5].
Simulation results are shown in Table 2, where constraints xi , y j ∈ ⌊−√

1,000,
√

1,000
⌋

are equivalent to x2
i ≤ 1,000 and y2

j ≤ 1,000.
In Table 2, symbol “–” means that no minmax optimization solution is found even if dif-

ferent initial values are used. Largescale 300 means that Largescale method runs 30 times.
From this table, we see that point (4, 6, 1, 0, 11, 10.7, 10, 5, 3) is minmax optimization
solution of Example 6, it taken 2.219 s.
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Table 2 The simulation results of Example 6

Iteration method Constraints of f (x) Minmax feasible solutions
(x1, x2, y1, y2, y3, y4, y5,

y6, y7, y8)

f (x, y) ε CPU
time (s)

Largescale 300 [−∞, 2, 000] (4, 6, 1, 0, 11, 10.7, 10, 5, 3) −31 0.1 2.2190

Largescale 300 [−∞, −31] – – –

Largescale 300 [−31, 2, 000] – – –

Largescale 300 [2, 000,∞] – – –

5 Conclusions

In this paper, new methods based on reference decision vectors have been proposed for solv-
ing unconstrained minmax problems or minmax problems with bounds on decision vectors.
At the same time, a new method based on necessary conditions similar to KKT conditions of
min or max constrained optimization problems is also given for solving constrained minmax
optimization problems, in which all minmax optimization solutions of constrained minmax
optimization problems can be got by using different M1 and M2 when the cost function
f (x, y) is constrained as M1 < f (x, y) < M2 where M1 and M2 are real numbers. To
show effectiveness of these methods, some examples are taken to compare with results in
the literature, as a result, it has superiority over the existing methods in the literature. This
indicates that the proposed method is very useful.

Appendix A

In the proof of theorems 1 and 2, the following Lemma 1 is used.

Lemma 1 If a matrix A is Hermite matrix and λ1 ≤ λ2 ≤ · · · ≤ λn(λ1, λ2, . . . , λn are
eigenvalues of matrix A), then for arbitrary vector X such that λ1 X∗ X ≤ X∗ AX ≤ λn X∗ X
(for proof omit here).

The proof of Theorem 1

Proof From �x = −η(∂ f (x, y)/∂x),�y = η(∂ f (x, y)/∂y) and Taylor expansion at point
(x∗, y∗), we have,

�x(k) = −η
∂2 f (x∗, y∗)

∂2x
(x − x∗) − η

∂2 f (x∗, y∗)
∂xy

(y − y∗) + O(x − x∗, y − y∗)

�y(k) = η
∂2 f (x∗, y∗)

∂yx
(x − x∗) + η

∂2 f (x∗, y∗)
∂2 y

(y − y∗) + O(x − x∗, y − y∗)

It can be written as

�1(k) = �1(k − 1) − η
∂2 f (x∗, y∗)

∂2x
�1(k − 1) − η

∂2 f (x∗, y∗)
∂xy

�2(k − 1)

+O(|x − x∗|, |y − y∗|)
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�2(k) = �2(k − 1) + η
∂2 f (x∗, y∗)

∂yx
�1(k − 1) + η

∂2 f (x∗, y∗)
∂2 y

�2(k − 1)

+O(|x − x∗|, |y − y∗|)
where �1(k) = x(k) − x∗, �2(k) = y − y∗ and (∂2 f (x, y)/∂xy) = (∂ f (x, y)/∂yx) for
continuously differentiable function f (x, y).

It follows that near (x∗, y∗), we have �(k)≈A1�3(k−1) where �(k)=[�1(k),�2(k)]T ,
�3(k − 1)=[�1(k − 1),−�2(k − 1)] and

A =
⎡

⎣
I − η

∂2 f (x∗,y∗)
∂2x

η
∂2 f (x∗,y∗)

∂xy

η
∂2 f (x∗,y∗)

∂xy −I + η
∂2 f (x∗,y∗)

∂2 y

⎤

⎦ .

because A is Hermite matrix, arbitrary eigenvalue of A ∗ A is the square of eigenvalue of
A. By Lemma 1, thus we have min |Z |2 ‖�3(k − 1)‖ ≤ ‖�(k)‖ ≈ ‖A1�3(k − 1)‖ ≤
max |Z |2 ‖�3(k − 1)‖, because ||�(k − 1)|| = ||�3(k − 1)||, if |Z | < 1 holds for arbitrary
eigenvalue, then �(k) is convergent as k → ∞ near point (x∗, y∗); if |Z | > 1 holds for
arbitrary eigenvalue, then �(k) is not convergent as k → ∞ near point (x∗, y∗), thus the
proof of this theorem is complete. 
�
The proof of Theorem 2

Proof By Taylor expansion at point (x∗, y∗), we have

∂ f (x, y)

∂x
= ∂ f (x∗, y∗)

∂x
+ ∂2 f (x∗, y∗)

∂2x
(x(k − 1) − x∗) + ∂2 f (x∗, y∗)

∂xy
(y(k − 1) − y∗)

+O(x − x∗, y − y∗)
∂ f (x, y)

∂y
= ∂ f (x∗, y∗)

∂y
+ ∂2 f (x∗, y∗)

∂xy
(x(k − 1) − x∗) + ∂2 f (x∗, y∗)

∂2 y
(y(k − 1) − y∗)

+O(x − x∗, y − y∗)

Thus, from Eq. 6, we have near (x∗, y∗),

x(k) ≈ x(k − 1) − η1
∂2 f (x∗, y∗)

∂2x
(x(k − 1) − x∗) − η1

∂2 f (x∗, y∗)
∂xy

(y(k − 1) − y∗)

+η2(x(k − 1) − x(k − 2))

y(k) ≈ y(k − 1) + η1
∂2 f (x∗, y∗)

∂xy
(x(k − 1) − x∗) + η1

∂2 f (x∗, y∗)
∂2 y

(y(k − 1) − y∗)

+η2(y(k − 1) − y(k − 2))

It follows that �1(k) ≈ �1(k − 1) − a�1(k − 1) − b�2(k − 2) + η2�1(k − 1) − η2�1(k − 2))

�2(k) ≈ �2(k − 1) + b�1(k − 1) + c�2(k − 1) − η2�2(k − 1) + η2�2(k − 1))
,

⎡

⎢
⎢
⎣

�1(k)

η0.5
2 �1(k − 1)

�2(k)

−η0.5
2 �2(k − 1)

⎤

⎥
⎥
⎦ ≈ A1

⎡

⎢
⎢
⎣

�1(k − 1)

−η0.5
2 �1(k − 2)

−�2(k − 1)

−η0.5
2 �2(k − 2)

⎤

⎥
⎥
⎦ ,

A1 =

⎡

⎢
⎢
⎣

I + η2 I − a η0.5
2 I b 0

η0.5
2 I 0 0 0

b 0 −I + η2 I − c η0.5
2 I

0 0 η0.5
2 I 0

⎤

⎥
⎥
⎦
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where
∥
∥(�1(k), η0.5

2 �1(k − 1),�2(k), −η0.5
2 �2(k − 1))

∥
∥ = ∥

∥(�1(k), η0.5
2 �1(k − 1),

�2(k), η0.5
2 �2(k − 1))

∥
∥

∥
∥(�1(k), −η0.5

2 �1(k − 1), −�2(k), −η0.5
2 �2(k − 1))

∥
∥ =

∥
∥(�1(k), η0.5

2 �1(k − 1), �2(k), η0.5
2 �2(k − 1))

∥
∥, a = η1(∂

2 f (x∗, y∗)/∂2x), b =
η1(∂

2 f (x∗, y∗)/∂xy), c = η1(∂
2 f (x∗, y∗)/∂2 y), �1(.) = x(.)−x∗ and �2(.) = y(.)− y∗.

Because there exists a ||.|| for arbitrary given ε > 0 such that max{|λ(A1)|} ≤ ‖A1‖ ≤
max{|λ(A1)|} + ε(where λ is an eigenvalue of matrix A) holds, if

∣
∣
∣
∣
∣
∣
∣
∣

I + η2 I − a − Z I η0.5
2 I b 0

η0.5
2 I −Z I 0 0

b 0 −I + η2 I − c − Z I η0.5
2 I

0 0 η0.5
2 I −Z I

∣
∣
∣
∣
∣
∣
∣
∣

= 0, |Z | < 1, that is,

∣
∣
∣
∣
−Z2 I + (1 + η2 − a)Z + η2 I bZ
bZ −Z2 I + (1 + η2 − c)Z + η2 I

∣
∣
∣
∣ = 0, |Z | < 1,

then ‖A1‖ < 1, this implies that ‖�1(k)‖ → 0, ‖�2(k)‖ → 0 as k → ∞. In addition,
because A1 is Hermite matrix, any eigenvalue of A1 ∗ A1 is the square of eigenvalue of A1,
thus by Lemma 1, we have

min |Z |2 ‖�3(k − 1)‖ ≤ ‖�(k)‖ ≈ ‖A1�3(k − 1)‖ ≤ max |Z |2 ‖�3(k − 1)‖
where �(k) = [�1(k), η0.5

2 �1(k − 1),�2(k),−η0.5
2 �2(k − 1)], �3(k − 1) = [�1(k − 1),

−η0.5
2 �1(k − 2),−�2(k − 1),−η0.5

2 �2(k − 2)]
Because ||�(k − 1)|| = ||�3(k − 1)||, If |Z | > 1 for arbitrary eigenvalue, then �(k) is

not convergent as k → ∞ near point (x∗, y∗) thus, the proof of this theorem is complete. 
�
The proof of Theorem 3

Proof Assuming that point (x∗, y∗) is a solution of (∂ f (x∗, y∗)/∂x) = (∂ f (x∗, y∗)/∂y) = 0,
by mean value theory of function, we have,

∂ f (x, y)

∂x
≈ ∂ f 2(x∗, y∗)

∂x2 (x − x∗) + ∂2 f (x∗, y∗)
∂xy

(y − y∗), ∂ f (x, y)

∂y

= ∂ f 2(x∗, y∗)
∂xy

(y − y∗) + ∂2 f (x∗, y∗)
∂y2 (y − y∗)

According to Eq. 8, we have

x(k)−x∗ ≈ x(k−1)−x∗+η1
∂2 f (x∗,y∗)

∂x2 (x(k−1)−x∗)+η1
∂2 f (x∗,y∗)

∂xy (y(k−1)−y∗)
−η2(x(k−1)−x∗−xr (k−1)+x∗)

y(k)−y∗ ≈ y(k−1)−y∗−η1
∂2 f (x∗,y∗)

∂y2 (y(k−1)−y∗)]−η1
∂2 f (x∗,y∗)

∂yx (x(k−1)−x∗)
−η2(y(k−1)−y∗−yr (k−1)+y∗)

xr (k)−x∗ = xr (k−1)−x∗+η3(x(k−1)−x∗−xr (k−1)+x∗), yr (k)−y∗ = yr−y∗
+η3(y(k−1)−y∗−yr (k−1)+y∗)

It follows that �(k) ≈ A�(k − 1), �(k) = [
�x(k) �xr (k) �y(k) �yr (k)

]T

where A =

⎡

⎢
⎢
⎢
⎣

(1−η2)I+η1
∂2 f (x∗,y∗)

∂x2 η2 I η1
∂2 f (x∗,y∗)

∂xy 0
η3 I (1−η3)I 0 0

η1
∂2 f (x∗,y∗)

∂yx 0 (1−η2)I−η1
∂2 f (x∗,y∗)

∂y2 η2 I

0 0 η3 I (1−η3)I

⎤

⎥
⎥
⎥
⎦
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A1 =

⎡

⎢
⎢
⎣

(1−η2)I η2 I η1
∂2 f
∂xy 0

0 (1−η3)I 0 0
0 0 (1−η2)I η2 I
0 0 0 (1−η3)I

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎢
⎣

η1
∂2 f
∂x2 0 0 0

η3 I 0 0 0

η1
∂2 f
∂yx 0 −η1

∂2 f
∂ f 2 0

0 0 η3 I 0

⎤

⎥
⎥
⎥
⎦

thus A = A1 + A2, ‖A‖ ≤ ‖A1‖ + ‖A2‖. In addition, because there exists a ||.|| such
that ‖A‖ ≤ ρ(A) + ε, ρ(A) = max{|λ| , λ ∈ λ(A)}, A ∈ Cn∗n where λ is an eigenvalue
vector of matrix A, and ε is arbitrary small positive number, ‖A1‖ ≤ ρ(A1) + ε1, ‖A2‖ ≤
ρ(A2)+ε2. If ρ(A1)+ρ(A2) < 1, then ||A|| < 1, this implies that Eq. 8 is convergent. From
|A1−λ(A1)| = 0, |A2 − λ(A2)| = 0, we have (1−η2−λ(A1)) = 0, (1−η3−λ(A1)) = 0 and
|η1(∂

2 f/∂x2)−λ(A2)||η1(∂
2 f/∂y2)+λ(A2)|λ(2 A2) = 0, This implies that λ(A1) = 1−η2,

1 − η3, λ(A2) = 0, |η1(∂
2 f/∂x2) − λ(A2)| = 0, |η1(∂

2 f/∂y2) + λ(A2)| = 0, thus we have
|λ(A2)| ≤ η1

∥
∥(∂2 f/∂x2)

∥
∥ and |λ(A2)| ≤ η1

∥
∥(∂2 f/∂y2)

∥
∥. Because

∥
∥(∂2 f/∂x2)

∥
∥ and

∥
∥(∂2 f/∂y2)

∥
∥ are bounded, if η1is very small, then |λ(A2)| << 1, it follows that ‖A‖ ≤

max{|1 − η2|, |1 − η3|) + ε, ε is arbitrary small positive number. If η1, η2 and η3 are chosen
as numbers such that max{|1 − η2|, |1 − η3|} + ε < 1, then ||A|| < 1, this implies that Eq. 8
is convergent, for example η1 is chosen as a very small number and η2, η3 are chosen as
number close to 1. Thus the proof of this theorem is complete. 
�
The proof of Theorem 5

Proof To prove Theorem 5, the following lemmas are used.
Gordan lemma: Given vectors A1, A2, . . . , Al ∈ RN , there exists no zero vector µ ∈ RL

with components µi , i = 1, 2, . . . , Lsuch that
∑l

j=1 µi Ai = 0 holds if and only if there

dose not exist vector P such that AT
i P < 0, j = 1, 2, . . . , L hold (For proof omit).

Lemma 2 Assuming J = {
j |g j (X̄) = 0, 1 ≤ j ≤ m

}
, there exists λ0 > 0 such that gi (X̄ +

λP ) > 0, j ∈ J for a vector P and arbitrary λ∈[0, λ0] if and only if ∇gi (X̄)T P > 0, j ∈ J
hold.

Proof For a vector P , λ0 > 0 and arbitrary λ∈[0, λ0], by the Taylor expansion, we have
gi (X̄+λP )=gi (X̄)+λ∇gi (X̄)T P+o(λ), j ∈ J . If λ is very small number and ∇gi (X̄)T P>0,

j ∈ J , then gi (X̄ +λP ) > 0, j ∈ J holds; on the other hand, if gi (X̄ +λP ) > 0, j ∈ J holds,
then gi (X̄ + λP ) − gi (X̄) > 0, j ∈ J and (dgi (X̄ + λP)/dλ) = ∇gi (X̄)T P > 0, as λ → 0.
(The proof is complete).

Lemma 3 If there exists λ0 > 0 such that f (X̄ + λP, Y ) > f (X̄ , Y ) for a vector P and
arbitrary λ∈[0, λ0] and Y if and only if ∇ f (X̄)T P > 0 holds.

Proof For a vector P ,λ0 > 0 and arbitraryλ∈[0, λ0], by the Taylor expansion, we have f (X̄+
λP, Y ) = f (X̄ , Y )+λ∇ f (X̄ , Y )T P + o(λ), if λ is very small number and ∇ f (X̄)T P > 0,
then f (X̄ + λP, Y ) > f (X̄ , Y ). In the other hand, if f (X̄ + λP, Y ) > f (X̄ , Y ), then
f (X̄ + λP, Y ) − f (X̄ , Y ) > 0 and d f (X̄ + λP, Y )/dλ = ∇ f (X̄ , Y )T P > 0, as λ → 0.
(the proof is complete). 
�

Lemma 4 If there exists λ0 > 0 such that f (X, Ȳ + λP) < f (X, Ȳ ) for a vector P and
arbitrary λ∈[0, λ0]and X if and only if ∇ f (X, Ȳ )T P < 0 holds (the proof, omit).
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Because point (x∗, y∗) is an optimization solution of problem (3), f (x∗, y) ≤ f (x∗, y∗) ≤
f (x, y∗), and at point (x∗, y∗), there do not exit P1 and P2 such that

{∇x f (x∗, y∗)P1 < 0
∇x gi (x∗, y∗)P1 > 0

and

{∇y f (x∗, y∗)P2 > 0
∇y gi (x∗, y∗)P2 > 0

hold, thus the proof of this theorem is complete.

The proof of Theorem 6

Assuming (X̄ , Ȳ ) is a optimization solution of problem (3), by Gordan lemma and Theorem
5, except that λi = 0, γi = 0, gi (X̄ , Ȳ ) > 0, we have

(a) gi (X̄ , Ȳ ) = 0, j ∈ J ,
(b) λ0∇ fx (X̄ , Ȳ ) − ∑J

i λi∇x gi (X̄ , Ȳ ) = 0,

(c) −γ0∇ fy(X̄ , Ȳ ) − ∑J
i γi∇y gi (X̄ , Ȳ ) = 0,

Because the set {∇g j |λ j �= 0, γ j �= 0} is linearly independent, it follows that

(a) gi (X̄ , Ȳ ) = 0, j ∈ J ,
(b) ∇ fx (X̄ , Ȳ ) − ∑J

i λi∇x gi (X̄ , Ȳ ) = 0,

(c) ∇ fy(X̄ , Ȳ ) + ∑J
i γi∇y gi (X̄ , Ȳ ) = 0,

thus the proof of this theorem is complete.
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